SL Paper 1

The vertices A, B, C of an acute angled triangle have position vectors **a**, **b**, **c** with respect to an origin O.

The mid-point of [BC] is denoted by D. The point E lies on [AD] such that AE = 2DE.

The perpendiculars from B to [AC] and C to [AB] meet at the point F.

a.i. Show that the position vector of E is

$$\frac{1}{3}(a + b + c).$$

a.ii.Explain briefly why this result shows that the three medians of a triangle are concurrent.

b.i.Show that the position vector **f** of F satisfies the equations

$$(\mathbf{b} - \mathbf{f}) \bullet (\mathbf{c} - \mathbf{a}) = 0$$

 $(\mathbf{c} - \mathbf{f}) \bullet (\mathbf{a} - \mathbf{b}) = 0.$

b.iiShow, by expanding these equations, that

$$(\boldsymbol{a}-\boldsymbol{f}) \bullet (\boldsymbol{c}-\boldsymbol{b}) = 0.$$

b.iiExplain briefly why this result shows that the three altitudes of a triangle are concurrent.

a. The point $T(at^2, 2at)$ lies on the parabola $y^2 = 4ax$. Show that the tangent to the parabola at T has equation $y = \frac{x}{t} + at$. [3]

(**b** –

- b. The distinct points $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$, where $p, q \neq 0$, also lie on the parabola $y^2 = 4ax$. Given that the line (PQ) passes [8] through the focus, show that
 - (i) pq = -1;
 - the tangents to the parabola at P and Q, intersect on the directrix. (ii)

The normal at the point $T(at^2, 2at), t \neq 0$, on the parabola $y^2 = 4ax$ meets the parabola again at the point $S(as^2, 2as)$.

- a. Show that $t^2 + st + 2 = 0$. [7]
- b. Given that \hat{SOT} is a right-angle, where O is the origin, determine the possible values of t.

[5]

[4]

[1]

[3]

[3]

[1]

The triangle ABC is isosceles and AB = BC = 5. D is the midpoint of AC and BD = 4.

Find the lengths of the tangents from A, B and D to the circle inscribed in the triangle ABD.

Given that the tangents at the points P and Q on the parabola $y^2 = 4ax$ are perpendicular, find the locus of the midpoint of PQ.

ABCDEF is a hexagon. A circle lies inside the hexagon and touches each of the six sides.

Show that AB + CD + EF = BC + DE + FA.

Consider the curve C given by $y = x^3$.

The tangent at a point P on C meets the curve again at Q. The tangent at Q meets the curve again at R. Denote the x-coordinates of P, Q and R, by x_1 , x_2 and x_3 respectively where $x_1 \neq 0$. Show that, x_1 , x_2 , x_3 form the first three elements of a divergent geometric sequence.

The points P, Q and R, lie on the sides [AB], [AC] and [BC], respectively, of the triangle ABC. The lines (AR), (BQ) and (CP) are concurrent.

Use Ceva's theorem to prove that [PQ] is parallel to [BC] if and only if R is the midpoint of [BC].

The points A, B have coordinates (-3, 0), (5, 0) respectively. Consider the Apollonius circle C which is the locus of point P where

$$rac{\mathrm{AP}}{\mathrm{BP}} = k ext{ for } k
eq 1.$$

Given that the centre of C has coordinates (13, 0), find

a. (i) the value of k;

- (ii) the radius of C;
- (iii) the x-intercepts of C.

b. Let M be any point on C and N be the x-intercept of C between A and B.

Prove that $\hat{AMN} = N\hat{MB}$.

[11]

[3]

The point P(x, y) moves in such a way that its distance from the point (1, 0) is three times its distance from the point (-1, 0).

a. Find the equation of the locus of P.	[4]
b. Show that this equation represents a circle and state its radius and the coordinates of its centre.	[4]

The parabola P has equation $y^2 = 4ax$. The distinct points U $(au^2, 2au)$ and V $(av^2, 2av)$ lie on P, where $u, v \neq 0$. Given that UÔV is a right angle, where O denotes the origin,

- (a) show that $v = -\frac{4}{\mu}$;
- (b) find expressions for the coordinates of W, the midpoint of [UV], in terms of a and u;
- (c) show that the locus of W, as u varies, is the parabola P' with equation $y^2 = 2ax 8a^2$;
- (d) determine the coordinates of the vertex of P'.
- a. Prove the internal angle bisector theorem, namely that the internal bisector of an angle of a triangle divides the side opposite the angle into [6] segments proportional to the sides adjacent to the angle.
- b. The bisector of the exterior angle \hat{A} of the triangle ABC meets (BC) at P. The bisector of the interior angle \hat{B} meets [AC] at Q. Given that [8] (PQ) meets [AB] at R, use Menelaus' theorem to prove that (CR) bisects the angle \hat{ACB} .

Triangle ABC has points D, E and F on sides [BC], [CA] and [AB] respectively; [AD], [BE] and [CF] intersect at the point P. If 3BD = 2DC and CE = 4EA, calculate the ratios

a.	AF	:	FB	
----	----	---	----	--

[4]

b. AP : PD

[4]

The figure shows a circle C_1 with centre O and diameter [PQ] and a circle C_2 which intersects (PQ) at the points R and S. T is one point of intersection of the two circles and (OT) is a tangent to C_2 .

a. Show that $\frac{OR}{OT} = \frac{OT}{OS}$.	[2]
b. (i) Show that $PR - RQ = 2OR$.	[6]

(ii) Show that
$$\frac{PR-RQ}{PR+RQ} = \frac{PS-SQ}{PS+SQ}$$

a.	A triangle	T has sides of length 3, 4 and 5.	[6]
	(i)	Find the radius of the circumscribed circle of T .	
	(ii)	Find the radius of the inscribed circle of T .	
b. A triangle U has sides of length 4, 5 and 7.		U has sides of length 4, 5 and 7.	[6]
	(i)	Show that the orthocentre, H, of U lies outside the triangle.	
	(ii)	Show that the foot of the perpendicular from H to the longest side divides it in the ratio 29 : 20.	

A wheel of radius r rolls, without slipping, along a straight path with the plane of the wheel remaining vertical. A point A on the circumference of the wheel is initially at O. When the wheel is rolled, the radius rotates through an angle of θ and the point of contact is now at B, where the length of the arc AB is equal to the distance OB. This is shown in the following diagram.

[3]

[6]

[3]

a. Find the coordinates of A in terms of r and θ .

b. As the wheel rolls, the point A traces out a curve. Show that the gradient of this curve is $\cot\left(\frac{1}{2}\theta\right)$.

c. Find the equation of the tangent to the curve when $\theta = \frac{\pi}{3}$.

- (a) The function g is defined by $g(x, y) = x^2 + y^2 + dx + ey + f$ and the circle C_1 has equation g(x, y) = 0.
- (i) Show that the centre of C_1 has coordinates $\left(-\frac{d}{2}, -\frac{e}{2}\right)$ and the radius of C_1 is $\sqrt{\frac{d^2}{4} + \frac{e^2}{4} f}$.
- (ii) The point P(a, b) lies outside C_1 . Show that the length of the tangents from P to C_1 is equal to $\sqrt{g(a, b)}$.
- (b) The circle C_2 has equation $x^2 + y^2 6x 2y + 6 = 0$.

The line y = mx meets C_2 at the points R and S.

- (i) Determine the quadratic equation whose roots are the *x*-coordinates of R and S.
- (ii) Hence, given that L denotes the length of the tangents from the origin O to C_2 , show that $OR \times OS = L^2$.

The diagram below shows a quadrilateral ABCD and a straight line which intersects (AB), (BC), (CD), (DA) at the points P, Q, R, S respectively.

Using Menelaus' theorem, show that $\frac{AP}{PB}\times\frac{BQ}{QC}\times\frac{CR}{RD}\times\frac{DS}{SA}=1$.

A circle $x^2 + y^2 + dx + ey + c = 0$ and a straight line lx + my + n = 0 intersect. Find the general equation of a circle which passes through the points of intersection, justifying your answer.

a.	Two line segments $[AB]$ and $[CD]$ meet internally at the point Y . Given that	[6]
	YA imes YB = YC imes YD show that A, B, C and D all lie on the circumference of a circle.	
b.	Explain why the result also holds if the line segments meet externally at ${ m Y}.$	[3]

The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths 3 cm and (\9\) cm respectively. E is a point on side [AB] such that AE is 3 cm. Side [DE] is produced to meet the circumcircle of ABCD at point P. Use Ptolemy's theorem to calculate the length of chord [AP].